The Electric Assist:
LEVERAGING E-BIKES AND E-SCOOTERS
FOR MORE LIVABLE CITIES
THE ELECTRIC ASSIST:
LEVERAGING E-BIKES AND E-SCOOTERS
FOR MORE LIVABLE CITIES

AUTHORS AND ACKNOWLEDGEMENTS

AUTHORS FROM ITDP

Dana Yanocha
Mackenzie Allan

CONTRIBUTORS FROM ITDP

EDITING, REVIEW, AND ADDITIONAL SUPPORT WAS PROVIDED BY ITDP GLOBAL STAFF:

Tara Eisenberg
Aimee Gauthier
Jacob Mason

BACKGROUND INFORMATION, DATA, AND INTERNAL REVIEW WAS PROVIDED BY ITDP FIELD OFFICE STAFF:

Varun Krishna ITDP India
Shanshan Li ITDP China
Clarisse Linke ITDP Brazil
Sonia Medina ITDP Mexico
Beatriz Rodrigues ITDP Brazil
Clara Vadillo ITDP Mexico

ITDP would also like to acknowledge the following experts who provided informational interviews during the scoping phase of this report and/or contributed thoughtful feedback as draft reviewers.

Stefan Bakker
Jules Flynn Lyft
Susan Goodwillie Flone Initiative
Colin Hughes JUMP
Morgan Lommele People for Bikes
Carlos Pardo NUMO
Michael Replogle New York Department of Transportation
Paul White Bird

Cover: David Francisco Rangel Téllez. Courtesy of Dezba.

CONTACT

INSTITUTE FOR TRANSPORTATION & DEVELOPMENT POLICY
9 East 19th Street, 7th Floor
New York, NY 10003

T: +1-212-629-8001
E: mobility@itdp.org
W: www.itdp.org
EXECUTIVE SUMMARY

WHAT IS ELECTRIC MICROMOBILITY?

Micromobility, though not yet universally defined, has been used to refer to a number of different modes. In this report, we use the term “electric micromobility” to refer to electric-powered modes of transport that are low-speed (comparable to a bicycle), small, lightweight, and typically used for short distance trips. These include primarily electric bicycles and standing e-scooters, but also other small electric devices, and can be shared or personally owned.

Why Does Electric Micromobility Matter?

Electric micromobility has enormous potential to improve sustainable urban transportation systems. Recent technological advancements and the rapid growth and adoption of shared mobility services have enabled small electric modes to scale. As a result, e-bikes and e-scooters could serve as a point of entry to the broader sustainable transportation network, enabling more people to rely on walking, cycling, and public transit for more trips—and perhaps consider not owning a car at all.

Why Does Electric Micromobility Matter?

Electric micromobility has enormous potential to improve sustainable urban transportation systems. Recent technological advancements and the rapid growth and adoption of shared mobility services have enabled small electric modes to scale. As a result, e-bikes and e-scooters could serve as a point of entry to the broader sustainable transportation network, enabling more people to rely on walking, cycling, and public transit for more trips—and perhaps consider not owning a car at all.

![Graph showing trips taken in the United States from 2013 to 2018](Credit: BikePortland, Flickr CC)
Most urban trips are less than five kilometers, a distance easily traveled using electric micromobility. As the share of short and mid-distance trips completed using e-bikes and e-scooters instead of cars grows, we can expect to see:

MORE TRIPS MADE BY BICYCLE, WALKING, AND TRANSIT, and a combination of these with electric micromobility

IMPROVED AIR QUALITY from a reduction in harmful pollutants

MORE EFFICIENT USE OF ENERGY

Energy usage based on one model, recognized as an average.

Source: Cherry et al., 2009

Source: ITDP data
Successful urban transportation systems increase access to destinations, activities, goods, and services, and do so in a form that is safe and equitable (both to access and in terms of benefits distribution), minimizes environmental harm, uses resources efficiently, and mitigates negative health impacts. Using this framework, we can evaluate the role of e-bikes and e-scooters in moving cities toward more sustainable transportation networks and identify potential negative impacts that will need to be addressed.

<table>
<thead>
<tr>
<th>Sustainable Transport Goal</th>
<th>Potential Positive Impacts</th>
<th>Potential Negative Impacts</th>
</tr>
</thead>
</table>
| **Access** | - Offer travel times competitive with vehicles for short trips
 - Provide connections to transit and economic and social opportunities
 - Increase use by more types of users and for more kinds of trips than pedal bicycles | - Demand for public parking and charging infrastructure |
| **Environment** | - Reduce single-occupancy vehicle trips
 - Improve air quality
 - Reduce harmful emissions from passenger and local freight transport | - Increase net emissions and materials use (shared devices with short life spans)
 - Displace transit, cycling, and walking trips |
| **Equity + Affordability** | - Shared systems offer alternative to purchasing outright
 - Connect underserved areas to transit
 - Provide travel alternatives that enable car-free or car-light living | - Availability limited to higher-income neighborhoods (shared systems)
 - Present barriers to use by those without a smartphone and/or credit card
 - Too expensive for low-income groups, especially without fare integration with transit (shared systems) |
| **Efficiency** | - Free up street space for more efficient uses
 - Increase energy efficiency in transport
 - Decrease need for public investment in road maintenance | - Oversupply and indiscriminately parked devices clutter sidewalks (shared dockless systems)
 - Increase energy use due to inefficient charging and redistribution of shared devices |
| **Safety** | - Contribute to "safety in numbers" effect where the presence of pedestrians and cyclists leads to safer streets for all
 - Increase demand for safe cycling and pedestrian infrastructure | - Increase crashes and injuries
 - Prompt harassment or social stigmatization |
| **Health** | - (E-bikes) Increase physical activity levels for those who would not consider pedal cycling
 - Reduce noise pollution when replacing car and motorcycle trips | - (E-scooters) Reduce physical activity levels if replacing walking or pedal cycling trips |
WHAT SHOULD CITIES DO TO LEVERAGE THE BENEFITS OF E-BIKES AND E-SCOOTERS?

Only a handful of published studies look at the impact of electric micromobility on sustainability goals. Few best practices of outcome-oriented planning in regards to electric micromobility have emerged given how recently e-bikes and e-scooters have grown in popularity in many cities. Recognizing this knowledge gap, we reviewed existing policies on e-bikes and e-scooters and developed the following recommendations for cities to minimize potential harm and maximize benefits.

ASSESSING CAPACITY NEEDS FOR SUCCESSFUL MANAGEMENT

Some cities are better equipped than others to implement supportive infrastructure, like cycle lanes and parking, and monitor the provision of shared e-bike and e-scooter services by the private sector. Cities that are less equipped should build capacity to better position themselves to manage e-bike and e-scooter use and to operate a sustainable transport network more broadly. Building capacity and partnerships between public and private stakeholders will be critical for these modes to achieve scale and related benefits, and to ensure they are well-integrated into urban transportation networks.

CONCLUSIONS

Additional research and analysis across the board—and especially in low-income contexts outside North America and Europe—is needed to better understand the right role for both personal and shared electric micromobility in urban transport. In the meantime, regardless of location, cities can take the following steps to expand access to and oversight of electric micromobility in the near term: Legalize use; standardize speed maximums for electric modes when using cycling infrastructure; design safe cycling infrastructure that accommodates both electric and non-electric devices; manage and regulate shared electric micromobility systems; and monitor use and ridership trends.
ELECTRIC MICROMOBILITY HAS THE POTENTIAL TO BECOME A CRITICAL COMPONENT IN THE SHIFT AWAY FROM PRIVATE VEHICLES AND TOWARD TRANSPORTATION SYSTEMS THAT PRIORITIZE PEOPLE. TO ACHIEVE THIS PIVOT, CITIES WILL NEED TO TAKE AN ACTIVE ROLE TO MAXIMIZE BENEFITS AND LIMIT NEGATIVE OUTCOMES.
E-BIKES AND E-SCOOTERS: DRIVERS OF CLIMATE ACTION

Electric bikes and scooters are more than a convenient first-last mile solution in cities. They also reduce emissions while catalyzing a broader shift toward sustainable transport.

QUIET STREETS
E-bikes and e-scooters are quieter than cars and motorcycles, making streets and public spaces more pleasant for pedestrians and cyclists.

SAFE STREETS
As the number of e-bike and e-scooter riders, cyclists, and pedestrians increases, streets become safer for all users.

What cities can do:

E-bikes and scooters fill gaps in the transport network, making a combination of cycling, walking, and public transit the easy choice over cars for more trips:

In Portland, Oregon, **6% of e-scooter users reported getting rid of a car** due to the availability of micromobility options.

LEGALIZE
Make low-speed e-bikes and scooters legal in cities. Regulate them as bicycles, not motor vehicles, so license and insurance are not required to ride.

STANDARDIZE
Clearly define and enforce speed maximums for e-bikes and e-scooters to distinguish where they can safely share cycle lanes with pedal bicycles.
E-bikes are competitive with cars on travel time, especially for trips up to 10km.

Choosing an e-bike or scooter instead of a car translates to measurable emissions reductions: A 5% increase in trips made by bicycle and electric micromobility instead of cars globally would reduce CO₂ emissions by 7% — the equivalent of taking more than 134 million cars off the road by 2030.

CONVENIENT ALTERNATIVES
E-bikes are competitive with cars on travel time, especially for trips up to 10km.

EQUITABLE ACCESS
E-bikes and e-scooters are attractive to—and increasingly used by—women, older adults, and other groups who have not felt comfortable on traditional bicycles.

CITIES CAN BE PROACTIVE IN MAXIMIZING THE BENEFITS OF ELECTRIC MICROMOBILITY BY ENACTING MEASURES TO LEGALIZE, STANDARDIZE, DESIGN FOR, MANAGE, AND MONITOR THESE MODES. DOING SO CAN HELP ENSURE THAT E-BIKES AND E-SCOOTERS PUSH FORWARD GOALS LIKE THOSE RELATED TO CLIMATE.

DESIGN
Ensure cycle lanes are protected and form a complete network, safely accommodating low-speed e-bike and e-scooter riders in addition to pedal cyclists.

MANAGE
Enforce rules for bikeshare and scootershare operators to ensure that sidewalks are clear, and shared bicycles and scooters are well-maintained.

MONITOR
Collect and analyze data on trip length, frequency of use, and destinations to better quantify personal e-mobility use, and scale and improve shared systems.

VISIT: ITDP.ORG/PUBLICATION/ELECTRIC-ASSIST TO LEARN MORE