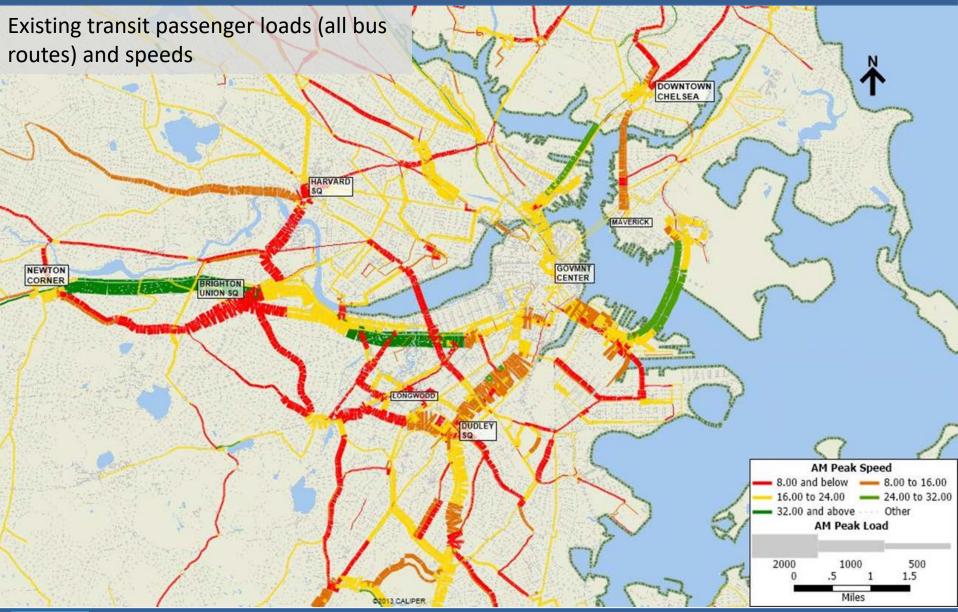
The Bus Rapid Transit Planning Guide, 4thEditionVolume II: Operations

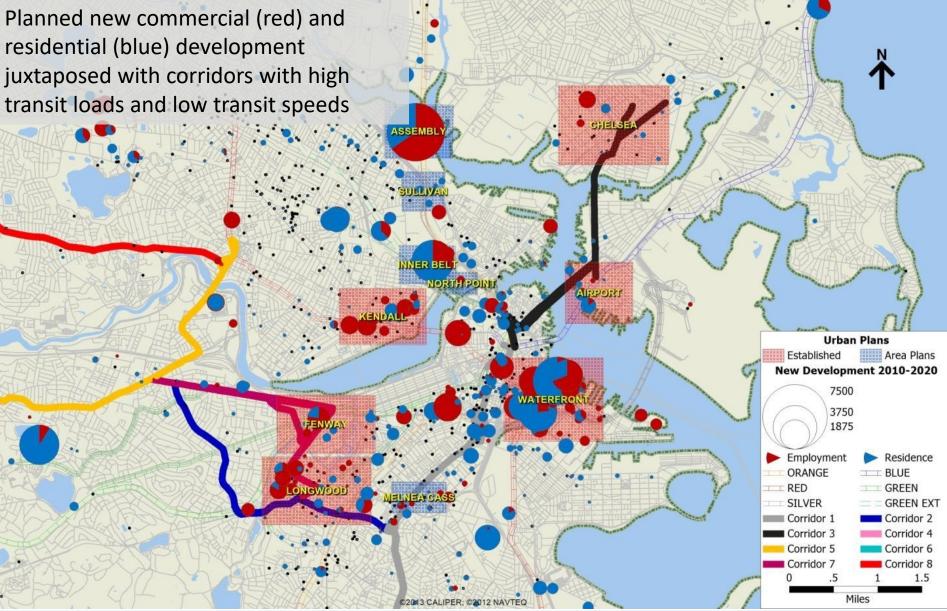
February, 2018 Dr. Walter Hook BRT Planning International

CH. 4 DEMAND ANALYSIS

For service planning, we need details about existing services

- Route-by-route boarding and alighting data
- Transfer surveys at high volume transfer points.
- Create a transit OD matrix using 'fratar' probability
- Reduced emphasis on traditional 4-step modelling
 - Too slow
 - Requires too much data
 - Not accurate at the stop level




How to decide where to put a BRT Corridor

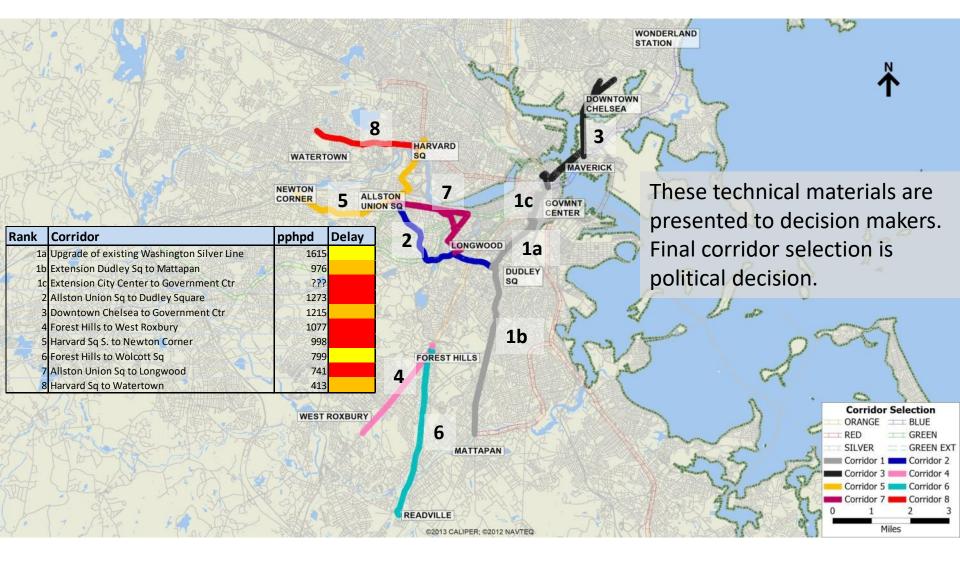
- Existing demand
- Existing transit delay
- Future demand (development approvals and strategic plans)
- Right-of-way (cost, land acquisition)
- Political / Community considerations

BRTPlan

BRT Planning International, 2018

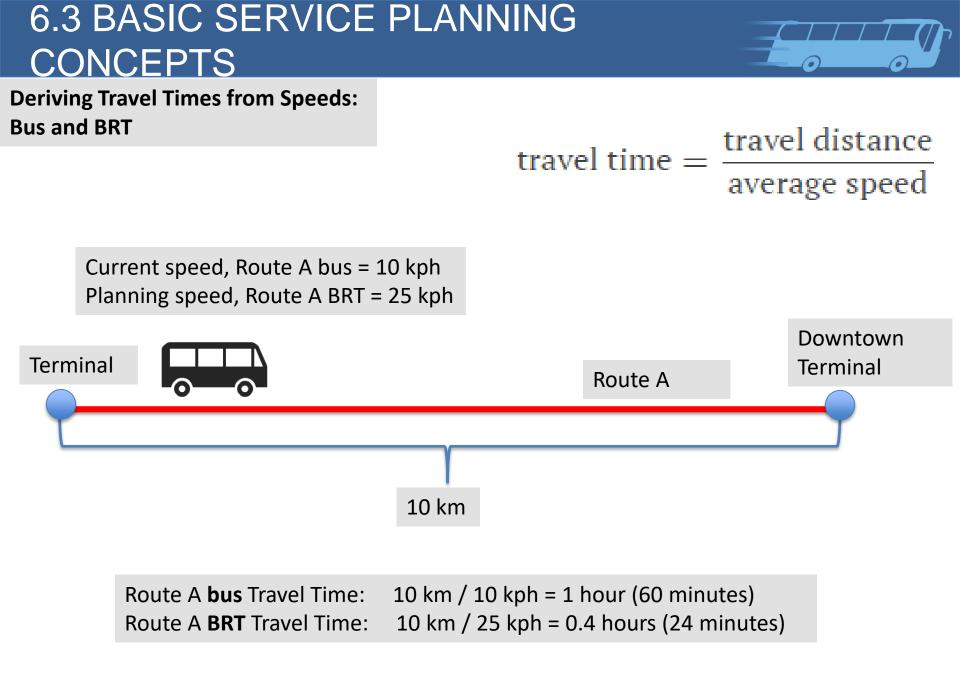
BRTPlan

BRT Planning International, 2018



How easy is it to put BRT on this corridor? Cost and political ease

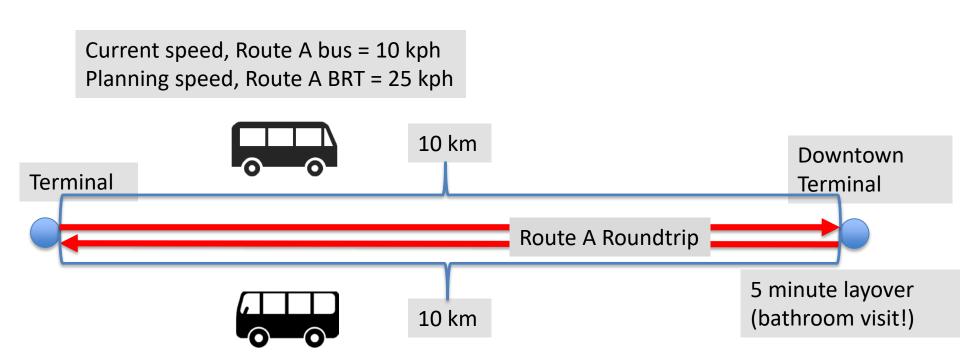
- 6.1 Introduction
- 6.2 Basic Data Collection
- 6.3 Basic Service Planning Concepts
- 6.4 Optimizing Vehicle Size and Fleet Size
- 6.5 Determining Which Routes to Include Inside BRT Infrastructure
- 6.6 Direct Services, Trunk-and-Feeder Services, or Hybrids
- 6.7 Deciding on Stop Elimination and Express Services
- 6.8 Creating New Routes and Combining Old Routes
 6.9 Pulling Services onto a BRT Trunk Corridor from a Parallel Corridor


The hour that carries the most passengers.

Determining the Peak Hour:

From boarding and alighting data on all routes that use the corridor, pick the hour with the highest aggregate loads at the highest demand part of the route

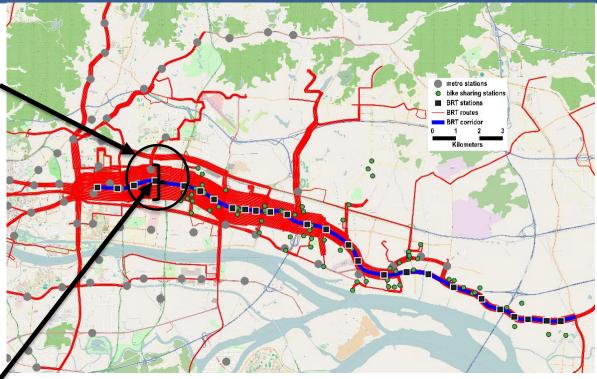
15 Minute H	leadway	
	Loads per	
	bus on the	
Time	Critical Link	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	
7:15 a.m.	69	
7:30 a.m.	67	
7:45 a.m.	66	
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	
9:00 a.m.	21	
9:00 a.m.	21	
9:15 a.m.	19	
9:30 a.m.	35	
9:45 a.m.	24	
10:00 a.m.	29	
10:15 a.m.	25	
10:30 a.m.	25	



Cycle Time:

The time it takes for a bus to make a roundtrip.

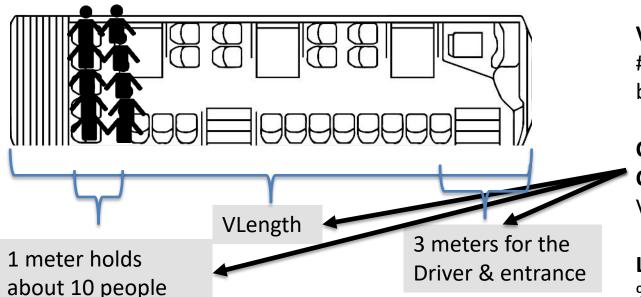
Route A **bus** Cycle Time = (10 km * 2) /10 kph + 5 minute (layover) = 125 minutes Route A **BRT** Cycle Time = (10 km * 2) / 25 kph + 5 minute (layover) = 53 minutes



Critical Link:

The section of the corridor with the highest loads during the peak hour

Determining the Critical Link:


Add up the loads on each route for each link of the planned BRT corridor

Max Load:

The total passenger load on the critical link during the peak hour

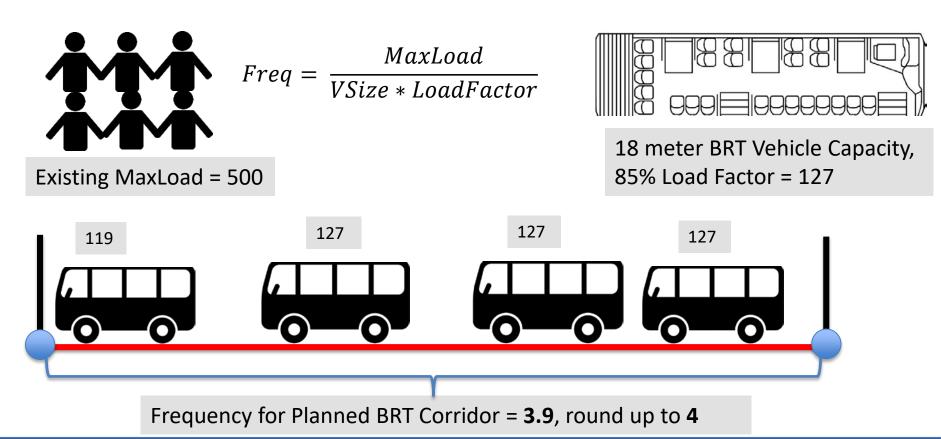
Table 6.6: Vel	Table 6.6: Vehicle Capacity and Load Factors for Typical				
BRT Vehicles					
	Vehicle				
	Length	Capacity	Capacity w		
Туре	(meters)	(customers)	Load Factor		
Minibus	9	60	51		
Bus	12	90	77		
Articulated	18	150	127		
Bi-Articulated	25	220	187		

Vehicle Capacity: # of people that fit on a bus.

Calculating Vehicle Capacity (VSize) (meters): VSize = (VLength - 3) * 10

Load factor:

% of Vehicle Capacity to make for a reasonably comfortable trip, used for planning purposes. Usually 85%.

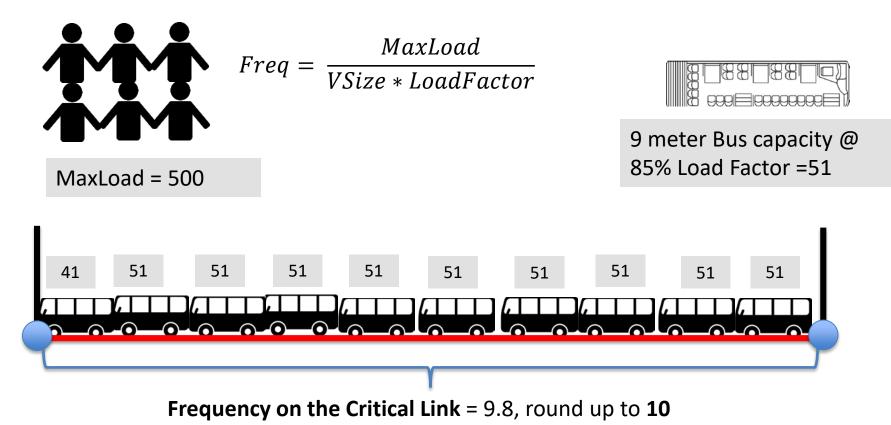


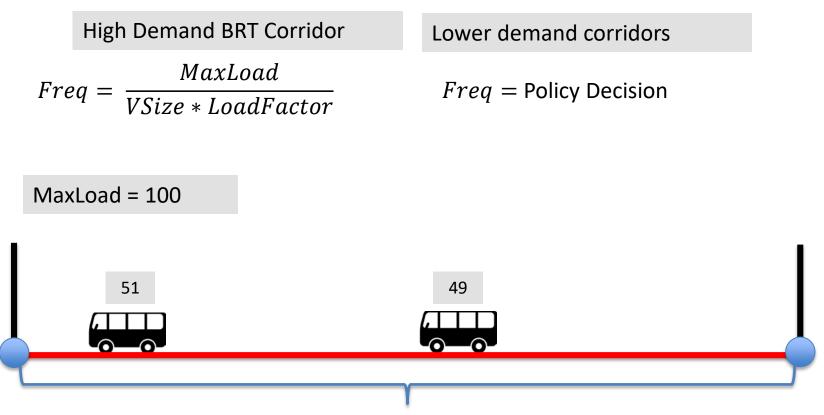
Frequency:

Buses in the peak hour, peak direction.

Determining Frequency for Planned BRT Corridor:

Divide the existing Max Load by the BRT Vehicle Size, applying a reasonable load factor




But if you design for 9-meter vehicles rather than 18-meter vehicles, for example...

Digression: In Low Demand corridors, where a demand-derived frequency would drop below a socially acceptable norm, the frequency would be a **policy decision**.

Frequency on the Critical Link =2 or more, depending on poicy

Frequency vs Vehicle Capacity Which determines which? Which one to use?

BRT Planning International, 2018

Simple Method:

First iteration, early planning. Hold frequency constant $VSize_{route} = \frac{MaxLoad_{route}}{Freq_{route} * LoadFactor}$

VSize_{route}

$$= \frac{MaxLoad_{route}}{22 * 0.85}$$

	First Iteration for Bus Sizing				
Existing Max	MaxLoad +				
Load	20% w BRT	Optimal Size	Suggested Vehicle Size		
3500	4200	191	Split the route		
3250	3900	177	Bi-articulated or split route		
3000	3600	164	Bi-articulated or split route		
2750	3300	150	Bi-articulated or split route		
2500	3000	136	Bi-articulated or split route		
2250	2700	123	Articulated		
2000	2400	109	Articulated		
1750	2100	95	Articulated		
1500	1800	82	12 meter bus		
1250	1500	68	12 meter bus		
1000	1200	55	12 meter bus		
750	900	41	9 meter bus		
500	600	27	9 meter bus		
250	300	14	9 meter bus		

BRT Planning International, 2018

Assumptions:

Freq = 22 veh/hr:

Highest frequency attainable in a BRT corridor without introducing significant irregularity. Based on empirical observation.

BRT Demand = Existing Demand + 20%:

Typically correct for early years planning.

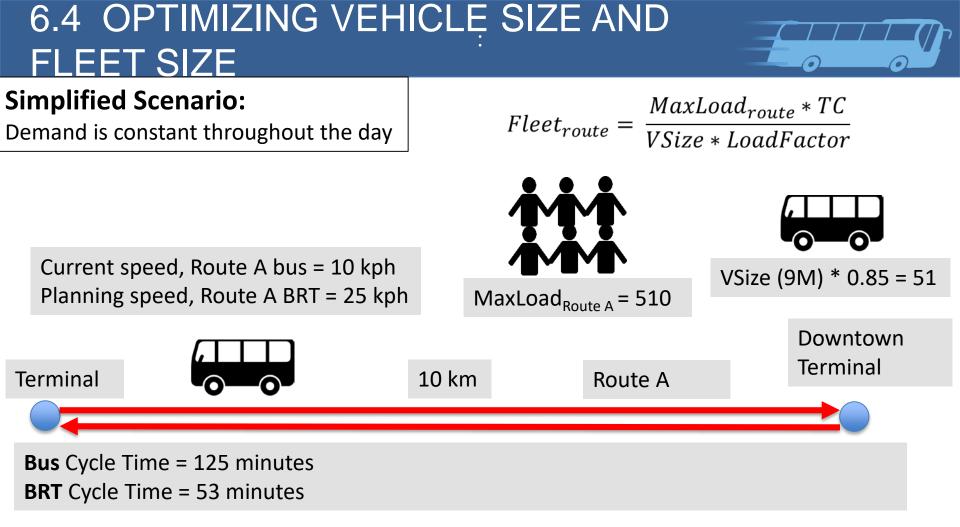
BRTPlan

Complex Method:

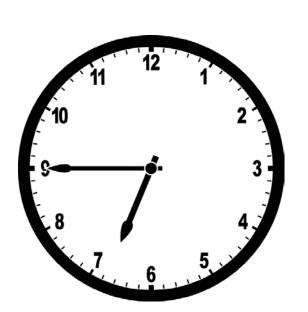
Use in detailed planning, more accurate. Does not assume a base frequency.

Optimal vehicle size is the one where the extra waiting costs of lower frequency (denominator) and the costs of operating the bus that *do not* vary with vehicle size (numerator).

$$VSize_{opt\,imum} * LoadFactor = \sqrt{\frac{BusFixedCost * MaxLoadperCycle_{route}}{Ren_{corridor} * Cost_{wait} * 0.5 * (1 + Irr_{city})}}$$

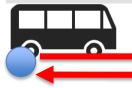

- Once you have determined the optimal Vehicle Size, you may then determine the actual optimal frequency.
- This, like most calculations, are iterative....

After determining vehicle size, determine Fleet size



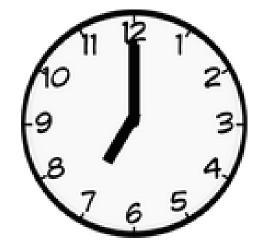
Current Fleet (9m buses) = (510 pax * (125 min / 60 min)) / 51 pax = 20.83, round up to **21 BRT Fleet** (9m buses) = (510 pax * (53 min / 60 min)) / 51 pax = 8.83, round up to **9**

15 Minute Loads		
	15 Minute	
Time	Loads	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	
7:15 a.m.	69	
7:30 a.m.	67	
7:45 a.m.	66	
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	
	~ 1	


Peaked Demand Scenario:

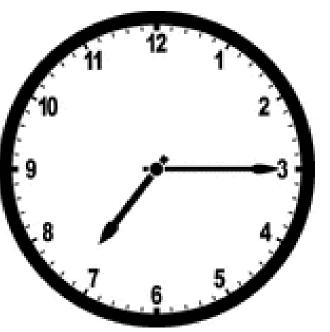
 $Fleet_{route} = \frac{MaxLoadperCycle_{route}}{VSize * LoadFactor}$ Max Load Per Cycle:

Maximum passenger demand that will cross the critical link during the course of 1 bus' cycle.

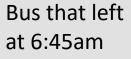

Example Cycle time = 1 hour.

6:45 bus picks up all waiting passengers

BRTPlan



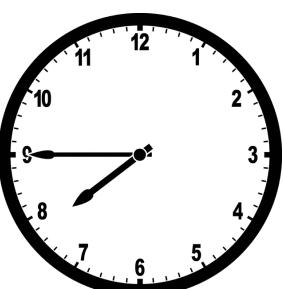
15 Minute	e Loads	
	15 Minute	
Time	Loads	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	
7:15 a.m.	69	
7:30 a.m.	67	
7:45 a.m.	66	
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	
a aa		

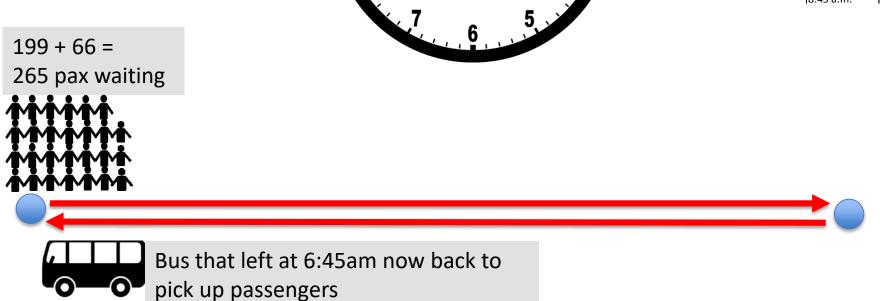


15 Minute Loads		
	15 Minute	
Time	Loads	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	
7:15 a.m.	69	
7:30 a.m.	67	
7:45 a.m.	66	
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	

63 + 69 = 132 pax waiting

15 Minute	e Loads	
	15 Minute	
Time	Loads	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	٦
7:15 a.m.	69	
7:30 a.m.	67	Г
7:45 a.m.	66	J
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	

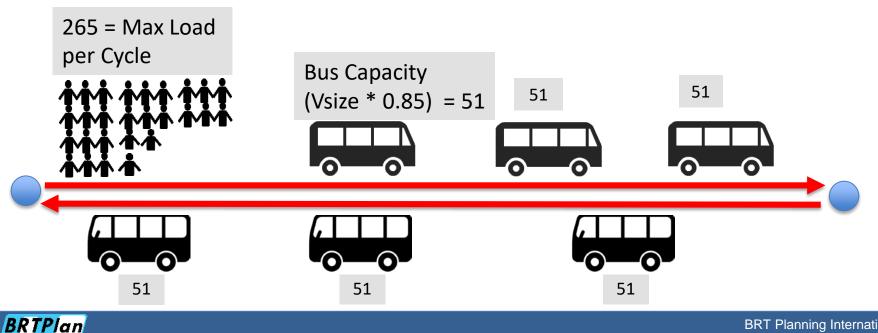

Bus that left at 6:45am now returning


132 + 67 =

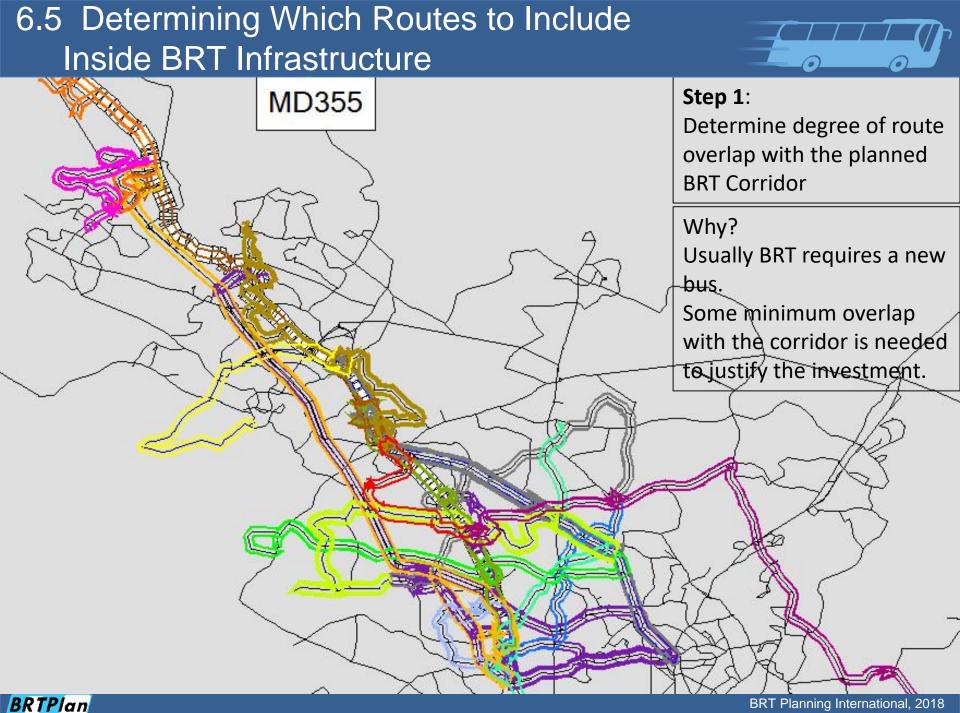
199 pax waiting

Cycle is over. Max Load per Cycle = **265**

15 Minu	te Loads	
	15 Minute	
Time	Loads	
6:00 a.m.	15	
6:15 a.m.	21	
6:30 a.m.	31	
6:45 a.m.	51	
7:00 a.m.	63	
7:15 a.m.	69	
7:30 a.m.	67	
7:45 a.m.	66	
8:00 a.m.	53	
8:15 a.m.	45	
8:30 a.m.	34	
8:45 a.m.	32	



Now we can calculate the **fleet**! Assume *9m buses. We can re-optimize bus size* using previous methods Eq. 6.20


 $Fleet_{route} = \frac{MaxLoadperCycle_{route}}{VSize * LoadFactor}$

Fleet = 265 pax / 51 pax = 5.19, so round up to **6**

BRTPlan

	# of		ALL LINE		IN CORRIDOR	
line	daily	fleet	Total	Vehicle	route	passenger
	trips		Рах	miles	extension	time
026R	89	8	3,328	1,382	4%	5%
030R	59	4	640	405	25%	36%
033R	32	3	353	224	5%	9%
034R	93	7	2,721	819	23%	27%
037R	27	3	224	244	5%	6%
038R	69	5	1,385	923	8%	15%
046R	126	8	4,023	1,200	100%	100%
055R	134	11	7,579	2,140	89%	99%
059R	98	7	3,859	1,247	35%	39%
067R	12	1	141	120	12%	12%
070R	55	7	721	1,070	12%	25%
075R	56	2	392	518	11%	17%
081R	31	2	217	184	22%	37%
083R	86	4	673	641	7%	4%
0C8W	64	6	2,200	1,147	3%	1%
0J1W	30	3	341	136	8%	13%
0J2W	140	9	4,829	1,761	20%	35%
0J3W	25	4	711	277	17%	33%
0J5W	20	2	303	226	22%	24%
0J7W	11	2	110	172	17%	32%
0J9W	22	3	357	363	19%	26%
0Q1W	9	-	400	120	21%	13%
0Q2W	34	-	1,666	445	21%	9%
0Q5W	5	-	303	49	30%	25%
0Q6W	75	8	2,416	812	37%	31%

BRTPlan

Step 1:

Determine which existing bus routes overlap with the planned BRT Corridor

Metrics:

- % of BRT Corridor used
- % of each route on BRT Corridor
- % of total trip time on Corridor

Usually a 25% cut-off is used, but there is no hard rule

783 नजफन्गढ

Step 2: Consider administrative authority. Only buses controlled by the BRT Authority should be allowed access

BRT Planning International, 2018

TTE

収む

्तारा अपार्टमेन्ट गोविन्ट परी

BRI

Step 3: Add as many routes as possible before saturating the busway.

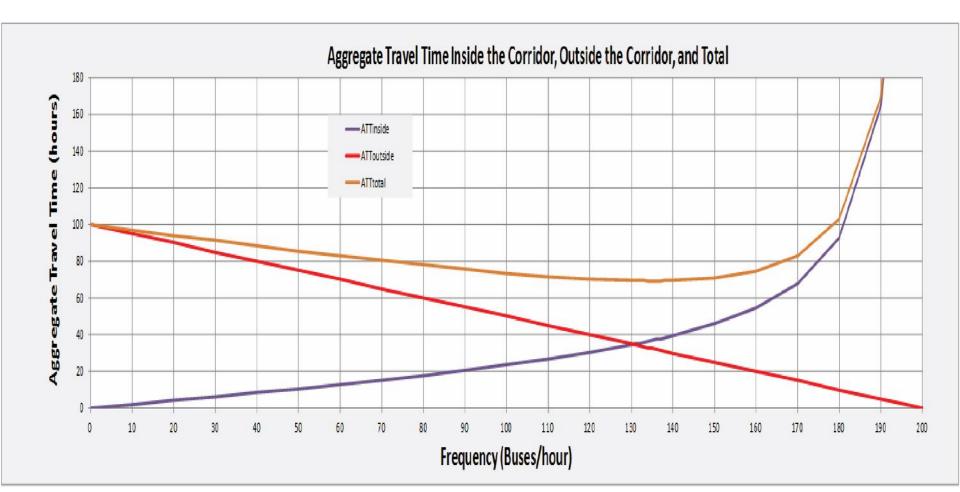
Not enough buses benefit from the busway (Beijing)

BRTPlan

快速车道

Too many buses outside of the busway

0


BRT Planning International, 2018

Step 3: Add as many routes as possible before saturating the busway.

Too many buses use the busway, Seattle 3rd Ave Busway

The total benefits of adding buses to a busway decline when the busway begins to saturate

Busway saturation occurs at the stations.

Station saturation occurs when buses are occupying a bus stop for 40% of the time, or 1440 seconds in an hour.

Saturation is calculated as follows:

 $x = T_d * F_{\text{inside}}$

where

x = saturation level of the bus stop T_d = Total dwell time per bus (passengers boarding and alighting, bus opening and closing doors) F_{inside} = Frequency inside the busway

6.5 Determining Which Routes to Include Inside BRT Infrastructure

Rank the routes to decide which to bring in. At the peak demand station,

Moves the most passengers [Pax(i)] Relative to the dwell time that it adds [Td(i)] to that station

 $Priority(i) = \frac{Pax(i)}{T_d(i)}$

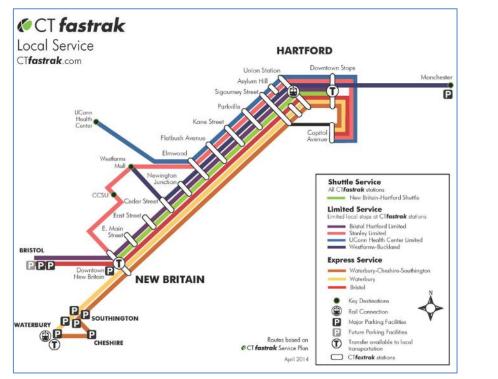
Where:

- Priority(*i*): Priority index of route "i"; Passengers per second of dwell time on route "i" at the bottleneck station;
- Pax(*i*): Average occupancy of each bus on route "i" as the bus passes the station;
- $T_d(i)$: Total dwell time in seconds of each bus on route "i".

6.5 Determining Which Routes to Include Inside BRT Infrastructure

Rank the routes by "Priority"

Keep adding routes until the busway saturates


		Route Value	ac		Accumulated values on station at route inclusion					
		Customers		Priority index						
	Frequency	of route i		(passengers						
		passing	Bus station use	in the system	Frequency	Customers				
		through	required by	per second of		inside the	Station			
Route		station	• •	station use)	busway	busway	saturation			
	. ,			,	,	,				
						Load_inside				
		load i=0 i	x_i = T_d * F_i /	priority i =		= Sum(O_i *	x_station =			
i	F_i				Sum(F_i)	F_i)	Sum(x_i)			
•	··			<u></u>	<u>ouni(: _i)</u>	· _·/				
	vehicle				vehicle					
unit>	/hour	pax/hour		pax/second	/hour	pax/hour				
В	20	1000	6%	5.00	20	1000	0.056			
F	25	500	3%	5.00	45	1500	0.083			
К	10	480	3%	4.80	55	1980	0.111			
Н	23	1265	8%	4.58	78	3245	0.188			
D	2	1804	13%	3.90	100	5049	0.316			
Μ	4	232	2%	3.87	104	5281	0.333			
G	8	320	4%	2.50	112	5601	0.368			
J	15	1230	15%	2.28	127	6831	0.518			
A	15	900	13%	2.00	142	7731	0.643			
1	8	560	9%	1.79	150	8291	0.73			
E	5	450	8%	1.50	155	8741	0.813			
L	6	354	9%	1.16	161	9095	0.898			
C	18	720	20%	1.00	179	9815	1.098			

BRT Planning International, 2018

6.6 Direct Services, Trunk-and-Feeder Services, or Hybrids

Direct Services: Hartford-New Britain BRT

BRTPlan

Trunk and Feeder Services: Lima BRT

BRT Planning International, 2016

6.6 Direct Services, Trunk-and-Feeder Services, or Hybrids

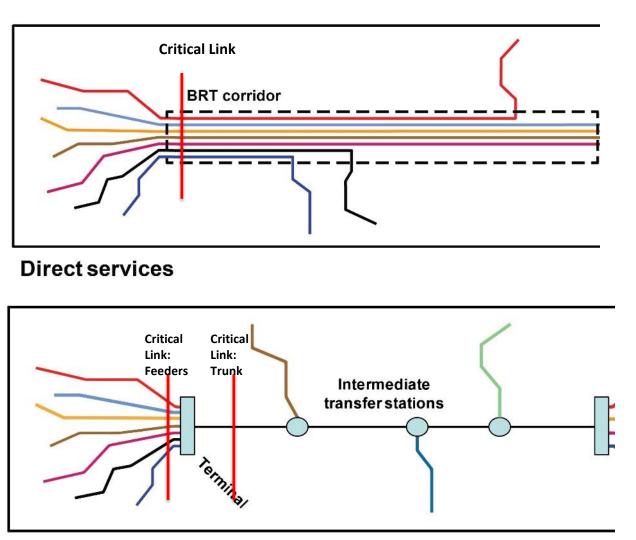
5109

E 1097

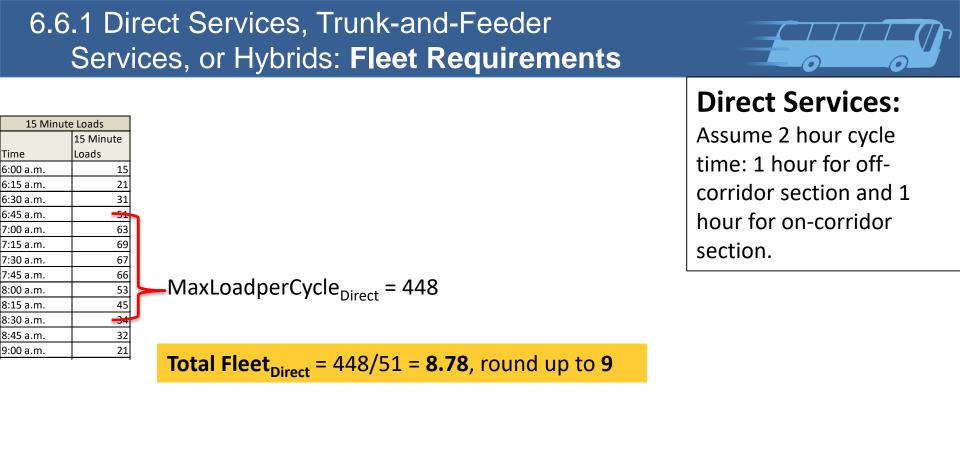
First question: Can local off-corridor streets handle BRT buses?

51064

Sometimes very narrow streets or steep hills off-corridor require splitting routes

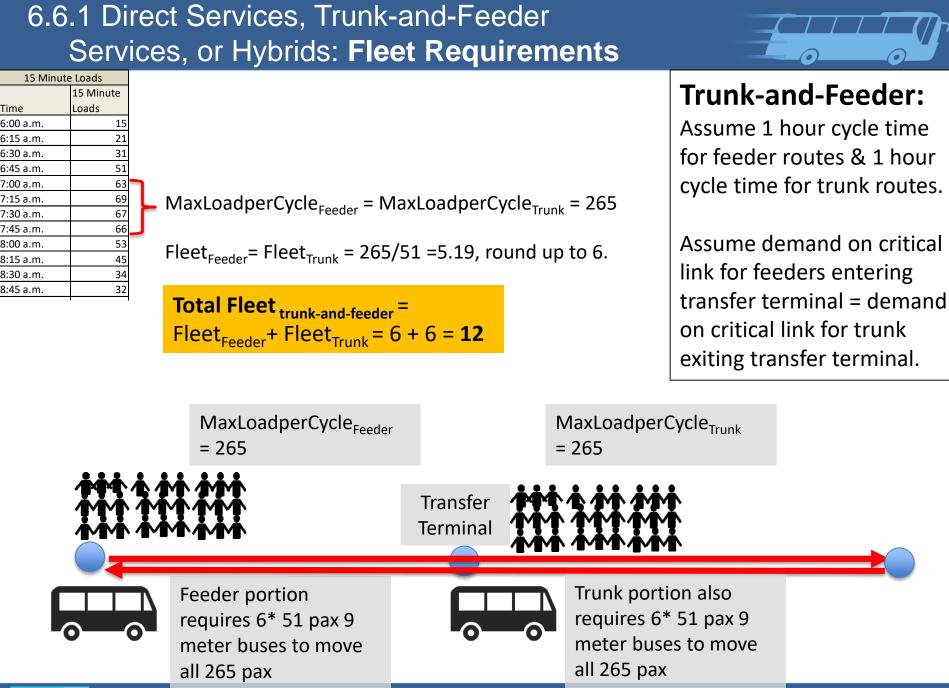

BRT Planning International, 2018

6.6.1 Fleet Requirements6.6.2 Vehicle Size6.6.3 Transfer and Terminal Delay6.6.4 Station and Platform saturation


6.6.1 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Fleet Requirements**

Fleet size for each route is determined based on the link with the highest demand.

Determining fleet size for Direct Service routes vs Trunk-and-Feeder routes requires determining **critical link** for each route.


Trunk-and-feeder services

Direct Services require only 9 * 51 pax buses to carry the 448 pax that would accumulate in the 2 hour cycle time.

BRTPlan

BRT Planning International, 2018

Direct services typically require less fleet.

In plain English, this is because trunk-and-feeder services generally **split the demand** at the critical link of one or both routes. The result is that this peak demand needs to be **served twice**: once by trunk buses and once by feeder buses.

Direct service routes, on the other hand, carry the same demand all the way through. While their routes are longer and more fleet is needed per route, the complete demand is served by one route.

BRT Planning International, 2018

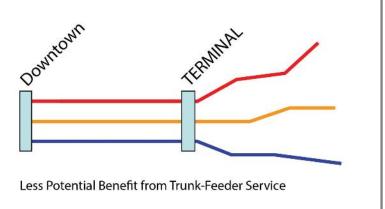
6.6.2 Direct Services, Trunk-and-Feeder Services, or Hybrids: Vehicle Size

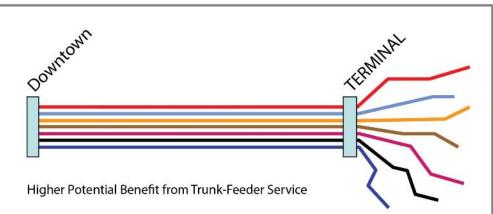
But wait! The trunk can use bigger buses, and bigger buses are more *efficient*!

How big will this effect be?

Efficient economies of scale on the trunk, less efficient on the feeder portion of the route .

Therefore,


BRTPlan


The longer the Trunk Route relative to the total route, the greater the vehicle size benefit of trunk-andfeeder

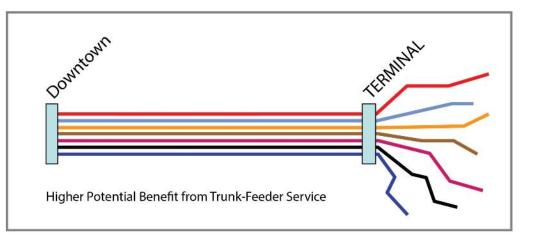
The greater the number of feeder Routes, the more benefit from larger buses on the trunk

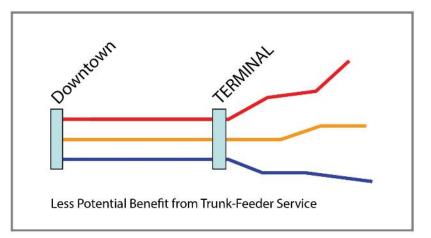
Range of benefit: 5% to 40%, with 10% the norm.

The Trunk Route relative

6.6.2 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Vehicle Size**

Larger vehicles are more efficient

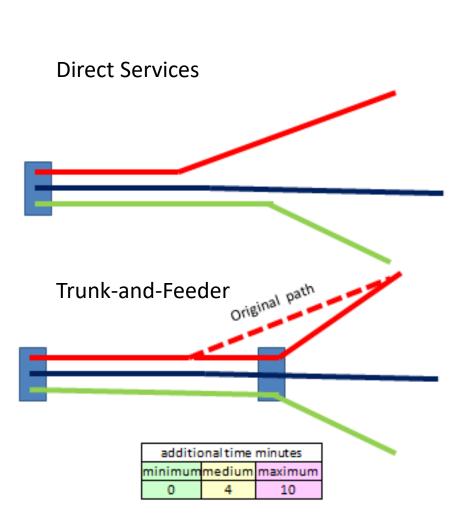

Larger optimal vehicle size on the trunk


Smaller optimal vehicle size on the feeder

Therefore,

>Trunk Route/Total Route, > benefit

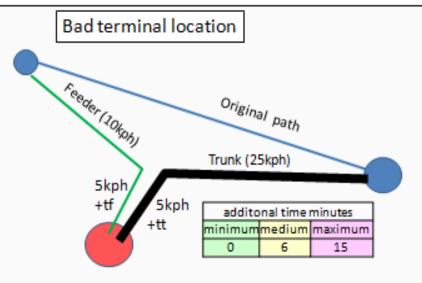
>#Feeder Routes, > benefit


6.6.3 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Transfer and Terminal Delay**

Indirectness of route:

Sometimes feeder routes must be rerouted in order to have access to a transfer terminal that benefits all routes.

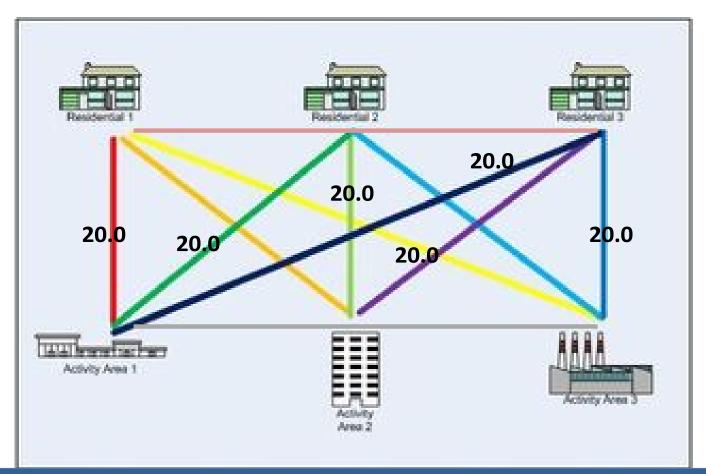
This causes indirectness of route to passengers on that feeder route.



6.6.3 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Transfer and Terminal Delay**

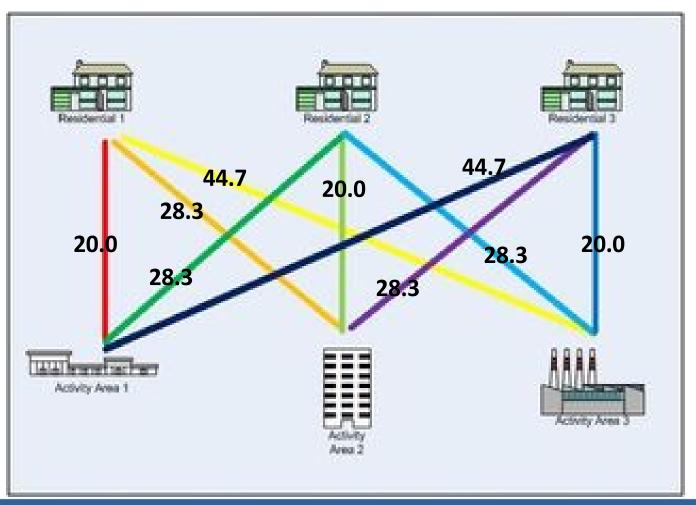
Other times, transfer must be built off the trunk corridor completely due to difficult land acquisition issues.

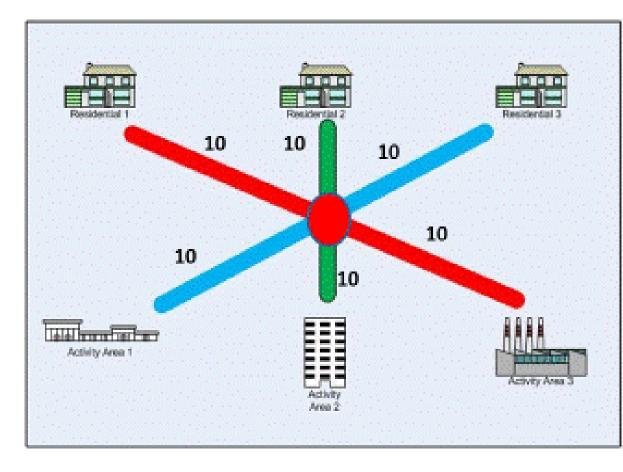
All services must be rerouted, adding distance.

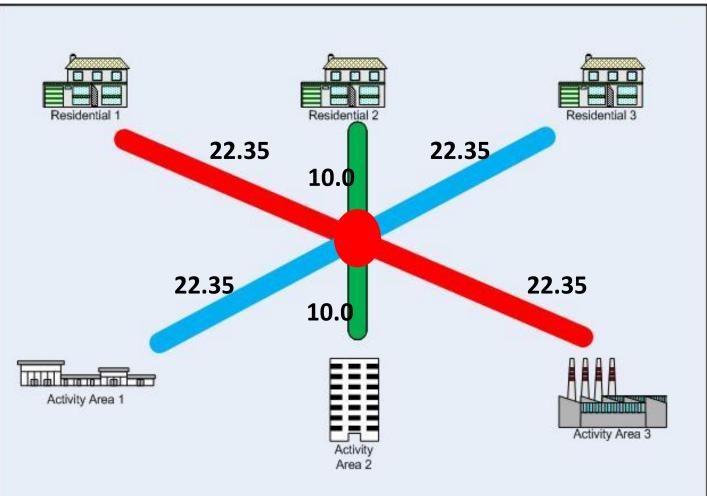


BRTPlan

1. All trips take 20 minutes.


This assumption incorrectly erases indirectness of route problem


Corrected for Pythagorean theorem.


2. Combine 9 direct routes into 3 routes with a central transfer terminal in order to triple frequency.

Corrected for Pythagorean theorem. Most original travel times are longer due to **indirectness of route**.



Digression: Human Transit's defense of transfers

This indirectness of route (and loss of service coverage) usually overwhelms the benefits of increased frequency.

Results are sensitive to demand levels.

6.6.3 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Transfer and Terminal Delay**

- Cost of constructing the terminal
- Passenger waiting time inside the terminal
- Passenger walking time inside terminal

6.6.4 Direct Services, Trunk-and-Feeder Services, or Hybrids: **Station and Platform saturation**

Benefit of trunk-and-feeder:

Increased trunk frequency reduces # of passengers waiting on each platform and moves them to a transfer terminal

Useful when not possible to get right of way for sufficiently wide trunk stations. However, requires large transfer stations.

When you split an existing route into a local and an express route, the following happens:

- Demand for each route is split between the two services
- The frequency of service for all passengers will drop.
- The regularity of service will change
- The travel time for the new express customers will drop based on the removal of fixed dwell time (from stops removed)

Benefit of adding limited stop service =

Value of passenger time savings + Value of operating cost savings

 $T_{0} *$ $Load_{limited-stop-at-k} * Cost_{travel} + Freq_{limited-stop-at-k} * Cost_{bus}$ k=skipped station

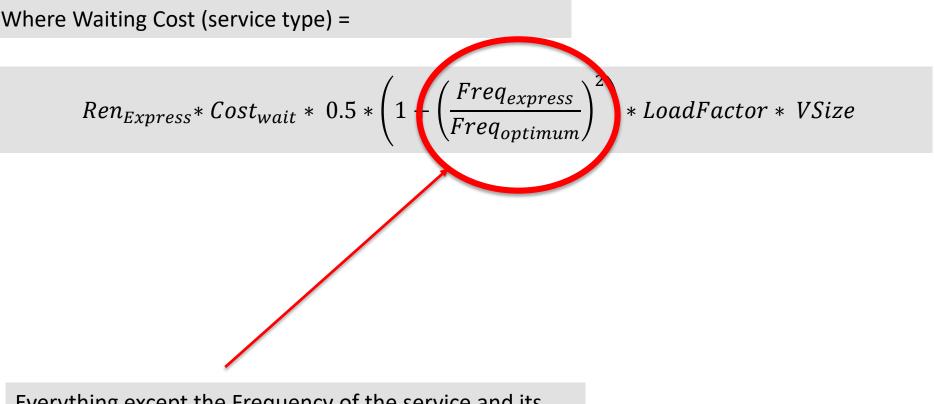
Fixed Dwell Time per bus Total passengers on board the limited service buses at the stop before the one(s) skipped

Passenger value of time (about 1/3 per capita hourly wage)

Frequency of the limited service Hourly operating cost of the bus

Cost of adding a limited stop service= the extra delay (passengers are waiting for 2 services with lower frequency) less any mitigation of the service irregularity (due to more optimal frequency)

 $ExpressCost = WaitCost_{express} + WaitCost_{local} - WaitCost_{original service}$


Where Waiting Cost (service type) =

$$Ren_{Express} * Cost_{wait} * 0.5 * \left(1 + \left(\frac{Freq_{express}}{Freq_{optimum}}\right)^2\right) * LoadFactor * VSize$$

$$Ren_{Local} * Cost_{wait} * 0.5 * \left(1 + \left(\frac{Freq_{local}}{Freq_{optimum}}\right)^2\right) * LoadFactor * VSize$$

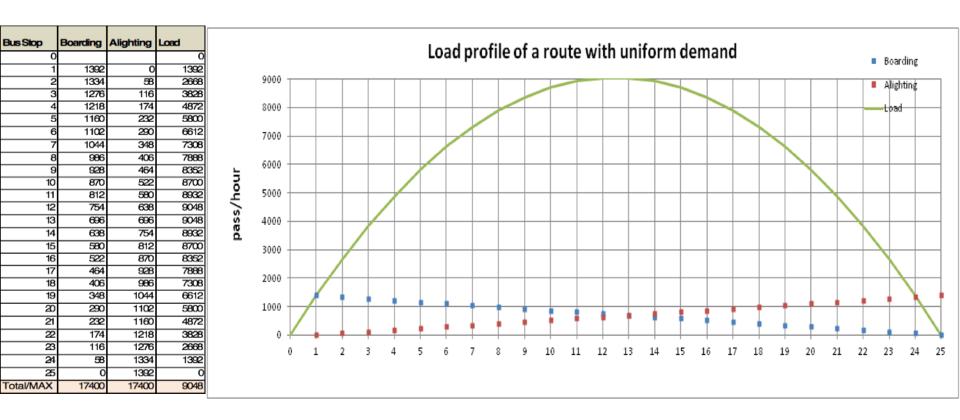
$$Ren_{Original} * Cost_{wait} * 0.5 * \left(1 + \left(\frac{Freq_{Original}}{Freq_{optimum}}\right)^{2}\right) * LoadFactor * VSize$$

Everything except the Frequency of the service and its relationship to the optimum frequency is constant.

- The utility of adding limited services increases with frequency. Above 31 buses per hour, splitting the route into an express and local *always* makes sense, due to growing irregularity and bus bunching.
- The benefits drop as frequency drops. On routes with frequency below 10 it *rarely* makes sense to add an express.

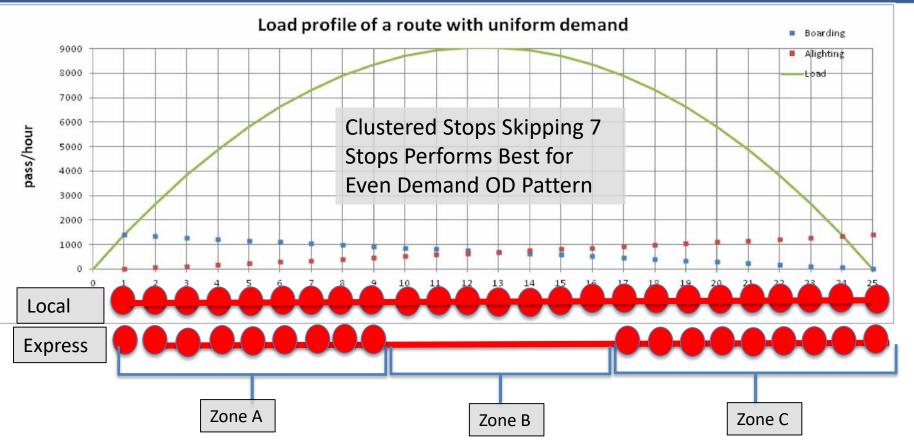
What Stopping Pattern? Service Approaches for a Typology of Origin-Destination Patterns

- Type I: Even demand between all OD pairs
- Type II: Demand clustered at the beginning and end of a route (A BRT transfer terminal and downtown)
- Type III: Demand concentrated at a few popular locations
- Type IV: Constantly declining (increasing) demand (from downtown outward)
- Type V: Extremely high demand



Type I: Even demand between all OD pairs

Zone/Stop	1	2	3		5			8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		Boardings
1	0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	83	58	58	58	58	58	58	1392
2		0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	- 58	58	1334
3			0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	-58	58	1276
4				0	68	89	58	58	58	58	58	58	58	58	58	58	58	58	68	58	58	58	58	-58	63	1218
5					0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	-58	58	1160
6						0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	-58	58	1102
7							0	58	-58	58	58	58	58	58	58	58	58	58	69	-58	58	58	58	-58	68	1044
8								0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	- 58	58	986
9									0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	-58	58	928
10										0	58	58	58	58	58	58	58	58	58	-58	58	58	58	-58	58	870
11											0	58	58	58	58	58	-58	58	58	58	58	58	58	-58	58	812
12												0	58	58	58	58	58	58	58	58	58	58	58	-58	58	754
13													0	58	58	58	58	58	58	58	58	58	58	-58	58	696
14														0	58	58	58	58	58	58	58	58	58	58	58	638
15															0	58	58	58	58	58	58	58	-58	- 58	58	580
16																0	58	58	-58	- 58	58	58	58	-58	58	522
17																	0	58	58	58	58	58	58	58	58	464
18																		0	58	58	58	58	- 58	- 58	58	406
19																			0	- 58	58	58	- 58	- 58	58	348
20																				0	58	58	58	- 58	58	290
21																				0	0	58	- 58	- 58	58	232
22																						0	-58	- 58	58	174
23																							0	- 58	58	116
24																								0	58	58
ක																									0	0
Alightings	0	58	116	174	232	290	348	406	464	522	580	638	696	754	812	870	928	986	1044	1102	1160	1218	1276	1334	1392	



Type I: Even demand between all OD pairs

Existing Service Frequency = 9048 (MaxLoad)/150 (bus capacity) = 61.32

Passengers traveling within zone A or Zone C can take either local or express.

No change in costs and benefits

Passengers traveling from A to C or C to A will all take Express.

Big benefit

Passengers traveling between A and B or B and C lose 50% of frequency Additional cost varies with frequency

Type I: Even demand between all OD pairs: 7 stops skipped by Express:

		Origin Destionation Matrix for Uniform Demand on a Bus Route																										
		Zone	Zone A											Z	one	В			Zone C									
		2018	20112/3100		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
			1	0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
			2		0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
			3			0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
	Demand split		4				0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
	between Express	Zone A	5					0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
	& Local		6						0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
			7							0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
			8								0	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58	58
	Demand		9									0	58	58		58	58	58	58	58			58	58	58	58	58	58
	captured entirely		10										0	58	58	58	58	58	58				58					58
	by Local		11 12											0	58 0	58 58	58 58	58 58	58 58				58 58					58 58
		Zone B	12												0	0	58	58	58				58					58
			14														0	58	58	58	58	58	58	58			58	58
	Demand		15															0	58				58					58
	captured entirely	_	16																0	58	58	58	58			58	58	58
	by Express		17																	0	58	58	58			58	58	58
			18																		0	58	58					58
			19																			0	58					58
			20																				0	58			58	
Rela	ative size of th	e bo	xes (d	en	har	nd	pe	er s	ser	vio	ce)	Va	irie	es v	vith	ı th	ne r	nur	nbe	er o	of s	top	S 0	0	58	58	58	58
			22				•															•			0	58	58	58
зкір	ped:																									0	58	58
			24																								0	58
			25																									0
		Alig	htings	0	58	116	174	232	290	348	406	464	522	580	638	696	754	812	870	928	986	1044	1102	1160	1218	1276	1334	1392

Even demand between all OD pairs: Benefits only

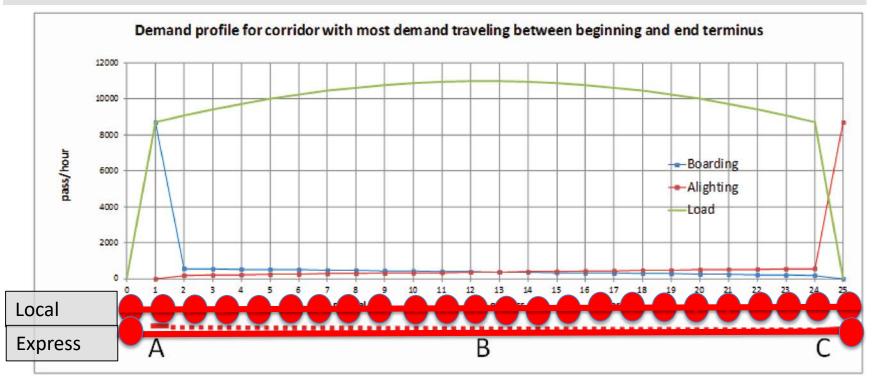
	Lin	nited Route	e Dema	nd Dist		Benefits								
							frequency of							
Bu	us stop use pat	<u>.ttern</u>	pass	enger den	nand div	ision	limited	bene	efits for limited	Total Benefit				
limited	/				\square	\square		time	passenger	· · · · · · · · · · · · · · · · · · ·				
and local	local stops			(/	1 /	(/	()	savings	hours of	bus hours				
stops	only	local stops	limited	shared	local	total	bus/h	per bus	benefit	saved	US\$/h			
11	3	11	7018	6380	4002	17400	46.79	1.500	175.45	1.170	1176			
10	5	10	5800	5220	6380	17400	38.7	2.5	242	1.61	1619			
9	7	9	4698	4176	8526	17400	31.3	3.5	274	1.83	1836			
8	9	8	3712	3248	10440	17400	24.7	4.5	278	1.86	1865			
7	11	7	2842	2436	12122	17400	18.9	5.5	261	1.74	1745			
6	13	6	2088	1740	13572	17400	13.9	6.5	226	1.51	1516			
5	15	5	1450	1160	14790	17400	9.7	7.5	181	1.21	1214			
4	17	4	928	696	15776	17400	6.2	8.5	131	0.88	881			
3	19	3	522	348	16530	17400	3.5	9.5	83	0.55	554			
2	21	2	232	116	17052	17400	1.5	10.5	41	0.27	272			
1	23	1	58	0	17342	17400	0.4	11.5	11	0.07	74			

As demand varies depending on how many stops are skipped, so does the frequency. Without considering costs (drop in frequency), benefits are maximized when 9 stops are skipped.

Type I: Even demand between all OD pairs: Benefits net of costs

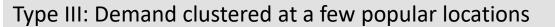
	Net Benefits of Alternative Skip Stop Patterns													
Limited	d Route Dem	and Distrib	ution	Benefits	Benefits Costs									
Bus Stop Use Pattern			Frequency of Limited	Total Benefit	Cost of Original Service	_		Net Cost of Express	Net Benefit					
Segment A: Limited and Local Stops	Segment B: Local Stops Only	Segment C: Limited and Local Stops	bus/h	US\$/h	US\$/h	US\$/hr	US\$/hr	US\$/hr	US\$/hr					
11	3	11	46.79	1176	3760	2802	1433	475	700					
10	5	10	38.7	1619	3760	2330	1624	194	1425					
9	7	9	31.3	1836	3760	1981	1874	95	1741					
8	9	8	24.7	1865	3760	1731	2159	130	1735					
7	11	7	18.9	1745	3760	1559	2460	258	1487					
6	13	6	13.9	1516	3760	1447	2757	444	1072					
5	15	5	9.7	1214	3760	1378	3036	654	560					
4	17	4	6.2	881	3760	1341	3282	863	18					
3	19	3	3.5	554	3760	1323	3485	1048	-494					
2	21	2	1.5	272	3760	1317	3636	1192	-920					
1	23	1	0.4	74	3760	1315	3729	1284	-1209					

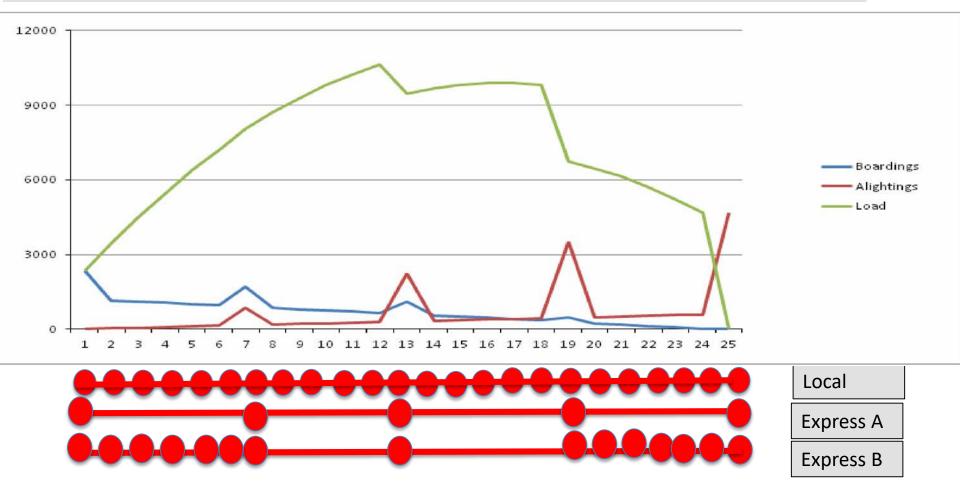
When costs are included, skipping 7 stops is optimal (Given a set of input assumptions)



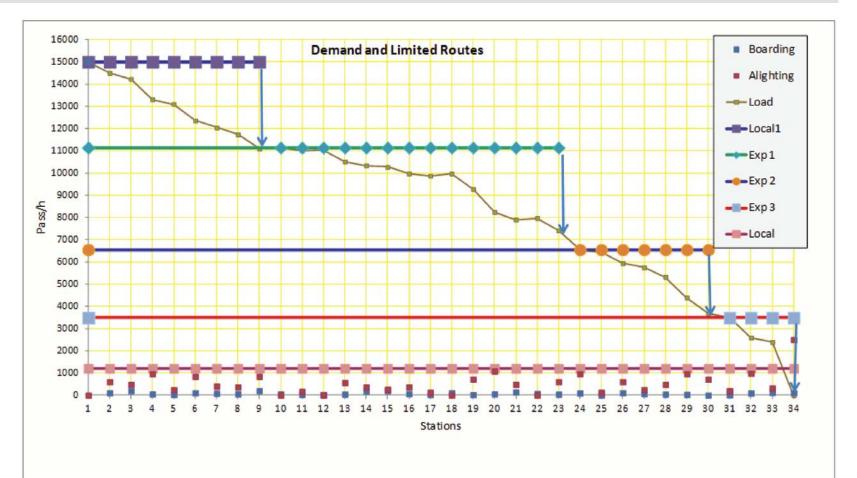
Type I: Even demand between all OD pairs: Conclusions

- Time saved on Express (from skipping stops) must be significantly greater than the time lost to both the Express and Local passengers (from lower frequency)
- Time saved from skipping stops doesn't vary with demand, but time lost due to lower frequencies is much lower on high demand corridors.
- Thus, the benefits of adding the Express increase with higher demand on the corridor
- In 'even demand' scenario, Express service needs to make clusters of local stops to collect enough demand.



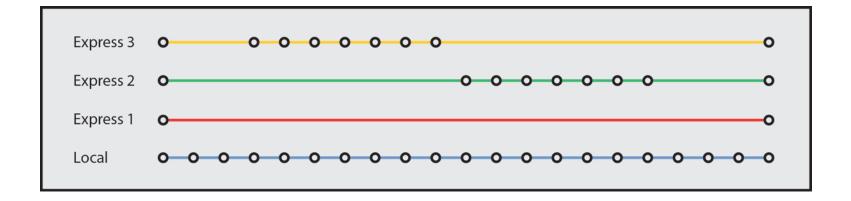

Type II: Trunk-Feeder Services

Express service should stop only at the transfer terminal and downtown with no intervening stops



Express Route B performs better than Express A in most OD profiles

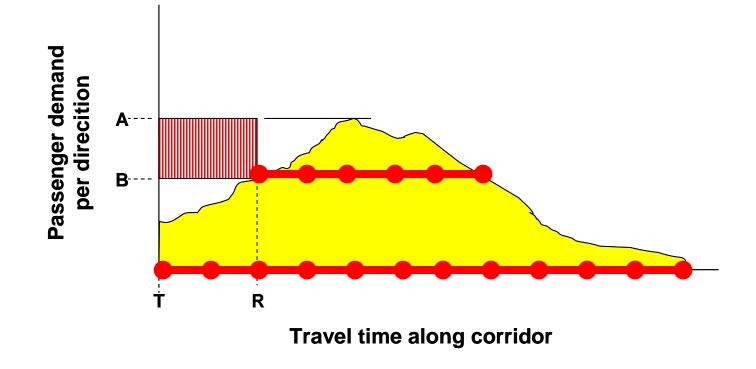
Type IV: Constantly falling loads



Optimal service design for constantly falling loads (for example, from downtown to the outskirts of town).

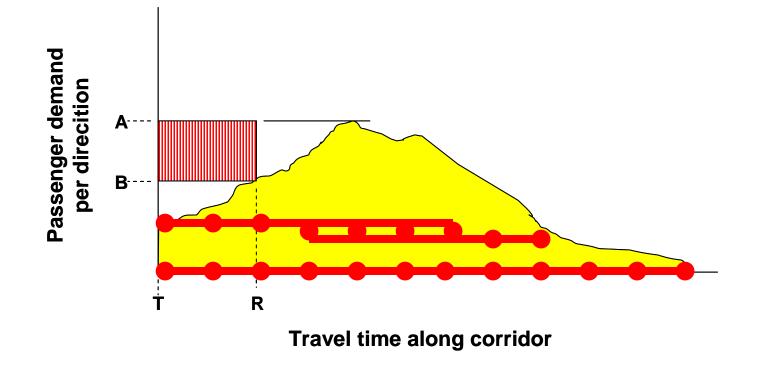
.

Type V: Extremely Heavy Demand (aka TransMilenio)

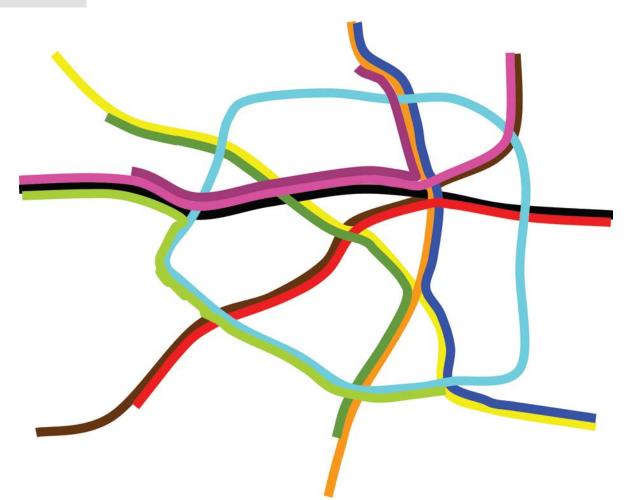


If demand on a corridor is high enough, it will make sense to keep splitting the demand among additional routes. There will be a sub-set of passengers for which many of the previously discussed profiles will be optimal.

Create 'early return' service overlapping a trunk service through peak demand section of a route



Shortening routes to improve regularity of service:


Doubles frequency in highest demand section of the corridor

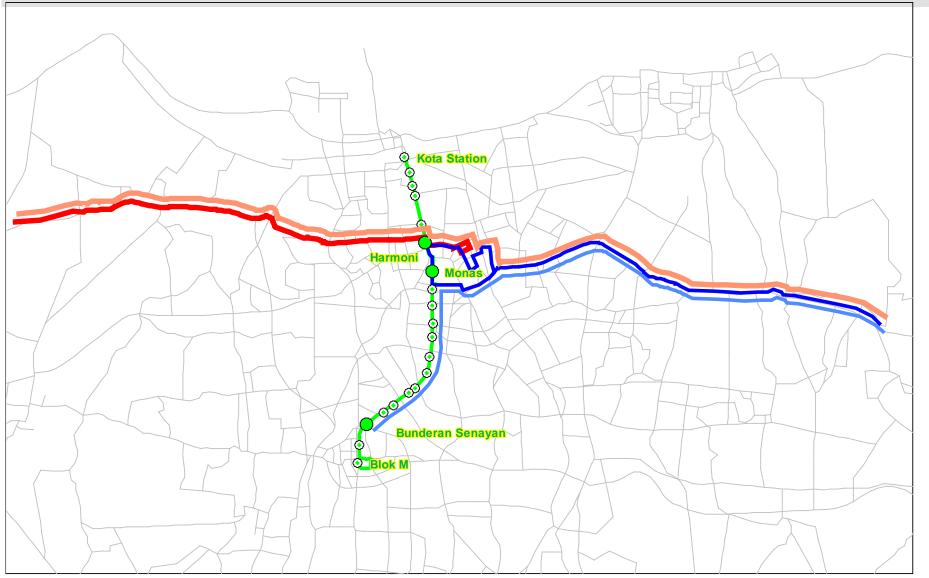
When to combine routes?

Metro systems have linear routes with high transfer volumes in huge transfer stations. BRT systems can just add inter-corridor services. But when?

Connecting Services: When does it make sense?

Many bus services in the US run on a grid pattern. Adding services that avoid transfers on highest volume routes make sense if the volumes are high enough. In the US they rarely are.

BRTPlan


A huge transfer bottleneck in TransJakarta at Harmony Station is evidence of a need for more inter-corridor routes. But which ones and how many?

Gradually more routes were added. Methodology not yet developed

THANK YOU

Visit: brtplan.com

Contact: Walter Hook whook@brtplan.com

